Project measure / variable:   Jax5   total_litters


  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Jax5 - total number of litters per dam



  MEASURE SUMMARY
Measure Summary Female
Number of strains tested35 strains
Mean of the strain means3.97   n
Median of the strain means3.88   n
SD of the strain means± 0.822
Coefficient of variation (CV)0.207
Min–max range of strain means2.54   –   5.41   n
Mean sample size per strain46.9   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
strain 34 1058.6803 31.1377 19.7793 < 0.0001
Residuals 1583 2492.0471 1.5743


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129P3/J f 3.06 1.46   49 0.209 0.478 1.0, 7.0 -1.11
129S1/SvImJ f 4.53 1.35   47 0.197 0.298 1.0, 7.0 0.68
129X1/SvJ f 4.44 1.3   48 0.188 0.294 1.0, 8.0 0.57
A/J f 4.12 1.21   51 0.17 0.294 2.0, 7.0 0.18
AKR/J f 3.35 1.01   49 0.144 0.302 1.0, 6.0 -0.75
B6.129P2-Apoetm1Unc/J f 3.82 1.16   50 0.163 0.302 2.0, 8.0 -0.18
B6(Cg)-Tyrc-2J/J f 3.28 1.27   18 0.3 0.389 1.0, 6.0 -0.84
BALB/cByJ f 3.33 1.23   43 0.187 0.37 1.0, 7.0 -0.78
BALB/cJ f 3.96 1.09   50 0.154 0.275 1.0, 6.0 -0.01
C3HeB/FeJ f 5.29 1.47   34 0.252 0.277 2.0, 7.0 1.6
C3H/HeJ f 3.48 0.931   50 0.132 0.268 1.0, 6.0 -0.6
C3H/HeOuJ f 4.22 1.39   50 0.196 0.329 1.0, 6.0 0.3
C57BL/10J f 3.8 1.23   50 0.174 0.323 1.0, 7.0 -0.21
C57BL/6J f 5.1 1.4   51 0.197 0.275 2.0, 8.0 1.37
C57BLKS/J f 2.64 1.32   45 0.196 0.498 1.0, 6.0 -1.62
C57L/J f 3.05 1.55   42 0.238 0.507 1.0, 6.0 -1.12
CAST/EiJ f 3.61 1.34   49 0.191 0.37 1.0, 7.0 -0.44
CBA/CaJ f 4.12 1.18   49 0.169 0.287 1.0, 7.0 0.18
CBA/J f 5.41 1.17   49 0.167 0.217 3.0, 8.0 1.75
DBA/1J f 5.1 1.23   50 0.174 0.242 2.0, 8.0 1.37
DBA/1LacJ f 5.18 1.17   49 0.167 0.225 3.0, 7.0 1.47
DBA/2J f 5.33 0.987   49 0.141 0.185 3.0, 7.0 1.65
FVB/NJ f 4.8 0.756   50 0.107 0.157 3.0, 7.0 1.01
KK/HlJ f 3.12 1.36   25 0.273 0.437 1.0, 5.0 -1.03
LP/J f 3.74 1.37   50 0.193 0.366 1.0, 7.0 -0.28
MRL/MpJ f 3.36 0.851   50 0.12 0.253 1.0, 5.0 -0.74
NOD.CB17-Prkdcscid/J f 4.06 1.04   50 0.147 0.256 2.0, 7.0 0.11
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ f 4.32 1.62   22 0.344 0.374 1.0, 7.0 0.42
NOD/ShiLtJ f 3.5 0.995   50 0.141 0.284 2.0, 6.0 -0.57
NZB/BlNJ f 2.54 1.16   50 0.165 0.458 1.0, 5.0 -1.74
NZW/LacJ f 3.88 1.12   50 0.158 0.288 1.0, 6.0 -0.11
PL/J f 4.39 1.96   49 0.279 0.446 1.0, 8.0 0.51
SJL/J f 5.02 1.36   50 0.193 0.271 2.0, 8.0 1.28
SM/J f 2.72 1.23   50 0.174 0.452 1.0, 5.0 -1.52
SWR/J f 3.3 1.4   50 0.198 0.425 1.0, 6.0 -0.82


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129P3/J f 3.0612 0.1792 3.4128 2.7096
129S1/SvImJ f 4.5319 0.183 4.8909 4.1729
129X1/SvJ f 4.4375 0.1811 4.7927 4.0823
A/J f 4.1176 0.1757 4.4623 3.773
AKR/J f 3.3469 0.1792 3.6985 2.9954
B6.129P2-Apoetm1Unc/J f 3.82 0.1774 4.168 3.472
B6(Cg)-Tyrc-2J/J f 3.2778 0.2957 3.8578 2.6977
BALB/cByJ f 3.3256 0.1913 3.7009 2.9503
BALB/cJ f 3.96 0.1774 4.308 3.612
C3HeB/FeJ f 5.2941 0.2152 5.7162 4.8721
C3H/HeJ f 3.48 0.1774 3.828 3.132
C3H/HeOuJ f 4.22 0.1774 4.568 3.872
C57BL/10J f 3.8 0.1774 4.148 3.452
C57BL/6J f 5.098 0.1757 5.4427 4.7534
C57BLKS/J f 2.6444 0.187 3.0113 2.2776
C57L/J f 3.0476 0.1936 3.4274 2.6679
CAST/EiJ f 3.6122 0.1792 3.9638 3.2607
CBA/CaJ f 4.1224 0.1792 4.474 3.7709
CBA/J f 5.4082 0.1792 5.7597 5.0566
DBA/1J f 5.1 0.1774 5.448 4.752
DBA/1LacJ f 5.1837 0.1792 5.5353 4.8321
DBA/2J f 5.3265 0.1792 5.6781 4.975
FVB/NJ f 4.8 0.1774 5.148 4.452
KK/HlJ f 3.12 0.2509 3.6122 2.6278
LP/J f 3.74 0.1774 4.088 3.392
MRL/MpJ f 3.36 0.1774 3.708 3.012
NOD.CB17-Prkdcscid/J f 4.06 0.1774 4.408 3.712
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ f 4.3182 0.2675 4.8429 3.7935
NOD/ShiLtJ f 3.5 0.1774 3.848 3.152
NZB/BlNJ f 2.54 0.1774 2.888 2.192
NZW/LacJ f 3.88 0.1774 4.228 3.532
PL/J f 4.3878 0.1792 4.7393 4.0362
SJL/J f 5.02 0.1774 5.368 4.672
SM/J f 2.72 0.1774 3.068 2.372
SWR/J f 3.3 0.1774 3.648 2.952




  GWAS USING LINEAR MIXED MODELS