Project measure / variable:   Wiltshire4   Bcells_Sel_ctrl


  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Wiltshire4 - B cells, percent viability control



  MEASURE SUMMARY
Measure Summary Male
Number of strains tested34 strains
Mean of the strain means100   %
Median of the strain means100   %
SD of the strain means± 0
Coefficient of variation (CV)0
Min–max range of strain means100   –   100   %
Mean sample size per strain4.0   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
strain 33 0.0001 0.0 0.0 1.0
Residuals 99 41618.6422 420.3903


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129S1/SvImJ m 100.0 4.25   4 2.12 0.0425 96.3, 104.0 0.0
129X1/SvJ m 100.0 11.7   4 5.86 0.117 83.3, 111.0 0.0
A/J m 100.0 5.65   4 2.83 0.0565 93.5, 107.0 0.0
AKR/J m 100.0 11.8   4 5.89 0.118 82.5, 107.0 0.0
BALB/cByJ m 100.0 0.42   4 0.21 0.0042 99.6, 101.0 0.0
BTBR T+ Itpr3tf/J m 100.0 20.2   4 10.1 0.202 82.9, 124.0 0.0
BUB/BnJ m 100.0 3.29   4 1.64 0.0329 97.5, 105.0 0.0
C3H/HeJ m 100.0 7.19   4 3.59 0.0719 90.4, 106.0 0.0
C57BL/6J m 100.0 3.3   4 1.65 0.033 95.9, 103.0 0.0
C57BLKS/J m 100.0 13.5   4 6.75 0.135 87.4, 118.0 0.0
C58/J m 100.0 7.69   2   5.44 0.0769 94.6, 105.0 0.0
CBA/J m 100.0 25.1   4 12.5 0.251 79.5, 132.0 0.0
CZECHII/EiJ m 100.0 19.8   4 9.89 0.198 70.4, 111.0 0.0
DBA/2J m 100.0 47.5   4 23.7 0.475 64.8, 170.0 0.0
FVB/NJ m 100.0 9.83   4 4.91 0.0983 89.6, 110.0 0.0
I/LnJ m 100.0 19.2   4 9.59 0.192 75.8, 119.0 0.0
KK/HlJ m 100.0 4.44   4 2.22 0.0444 93.6, 104.0 0.0
LG/J m 100.0 66.7   4 33.3 0.667 0.0
LP/J m 100.0 14.6   4 7.32 0.146 81.8, 114.0 0.0
MA/MyJ m 100.0 9.6   4 4.8 0.096 86.6, 109.0 0.0
NOD/ShiLtJ m 100.0 9.52   4 4.76 0.0952 87.8, 110.0 0.0
NON/ShiLtJ m 100.0 14.9   4 7.43 0.149 83.2, 114.0 0.0
NZB/BlNJ m 100.0 7.72   4 3.86 0.0772 88.5, 105.0 0.0
NZO/HlLtJ m 100.0 15.3   4 7.67 0.153 83.3, 114.0 0.0
NZW/LacJ m 100.0 22.1   4 11.0 0.221 67.0, 113.0 0.0
PERA/EiJ m 100.0 19.9   4 9.96 0.199 76.4, 125.0 0.0
PL/J m 100.0 19.5   4 9.76 0.195 70.8, 111.0 0.0
PWD/PhJ m 100.0 8.87   4 4.43 0.0887 87.7, 107.0 0.0
PWK/PhJ m 100.0 8.44   4 4.22 0.0844 91.0, 111.0 0.0
RIIIS/J m 100.0 2.84   4 1.42 0.0284 97.8, 104.0 0.0
SEA/GnJ m 100.0 19.5   4 9.75 0.195 82.6, 128.0 0.0
SJL/J m 100.0 26.7   4 13.4 0.267 77.7, 136.0 0.0
SM/J m 100.0 32.7   4 16.3 0.327 52.2, 121.0 0.0
WSB/EiJ m 100.0 15.6   3 9.03 0.156 82.0, 110.0 0.0


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ m 100.0 10.2517 120.3416 79.6584
129X1/SvJ m 100.0 10.2517 120.3416 79.6584
A/J m 100.0025 10.2517 120.3441 79.6609
AKR/J m 100.0025 10.2517 120.3441 79.6609
BALB/cByJ m 100.0 10.2517 120.3416 79.6584
BTBR T+ Itpr3tf/J m 100.0 10.2517 120.3416 79.6584
BUB/BnJ m 100.0 10.2517 120.3416 79.6584
C3H/HeJ m 100.0 10.2517 120.3416 79.6584
C57BL/6J m 100.0 10.2517 120.3416 79.6584
C57BLKS/J m 100.0 10.2517 120.3416 79.6584
C58/J m 100.0 14.4981 128.7674 71.2326
CBA/J m 100.0 10.2517 120.3416 79.6584
CZECHII/EiJ m 100.0 10.2517 120.3416 79.6584
DBA/2J m 100.0 10.2517 120.3416 79.6584
FVB/NJ m 100.0 10.2517 120.3416 79.6584
I/LnJ m 100.0 10.2517 120.3416 79.6584
KK/HlJ m 100.0 10.2517 120.3416 79.6584
LG/J m 99.9975 10.2517 120.3391 79.6559
LP/J m 100.0 10.2517 120.3416 79.6584
MA/MyJ m 100.0 10.2517 120.3416 79.6584
NOD/ShiLtJ m 100.0 10.2517 120.3416 79.6584
NON/ShiLtJ m 100.0 10.2517 120.3416 79.6584
NZB/BlNJ m 100.0 10.2517 120.3416 79.6584
NZO/HlLtJ m 100.0 10.2517 120.3416 79.6584
NZW/LacJ m 100.0 10.2517 120.3416 79.6584
PERA/EiJ m 100.0 10.2517 120.3416 79.6584
PL/J m 100.0 10.2517 120.3416 79.6584
PWD/PhJ m 100.0 10.2517 120.3416 79.6584
PWK/PhJ m 100.0 10.2517 120.3416 79.6584
RIIIS/J m 100.0 10.2517 120.3416 79.6584
SEA/GnJ m 100.0 10.2517 120.3416 79.6584
SJL/J m 100.0 10.2517 120.3416 79.6584
SM/J m 100.0 10.2517 120.3416 79.6584
WSB/EiJ m 100.0 11.8377 123.4885 76.5115




  GWAS USING LINEAR MIXED MODELS