Project measure / variable:   Rhodes1   DG_vol_wheel


  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Rhodes1 - hippocampus: volume of dentate gyrus with running wheel



  MEASURE SUMMARY
Measure Summary FemaleMale
Number of strains tested12 strains12 strains
Mean of the strain means0.438   mm3 0.433   mm3
Median of the strain means0.423   mm3 0.426   mm3
SD of the strain means± 0.0637 ± 0.0598
Coefficient of variation (CV)0.145 0.138
Min–max range of strain means0.354   –   0.558   mm3 0.360   –   0.570   mm3
Mean sample size per strain4.0   mice 4.0   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
sex 1 0.0002 0.0002 0.0324 0.8577
strain 11 0.2961 0.0269 4.677 < 0.0001
sex:strain 11 0.0444 0.004 0.7019 0.7327
Residuals 72 0.4145 0.0058


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129S1/SvImJ f 0.519 0.0698   4 0.0349 0.134 0.466, 0.615 1.27
129S1/SvImJ m 0.404 0.0492   4 0.0246 0.122 0.348, 0.465 -0.48
AKR/J f 0.419 0.0763   4 0.0381 0.182 0.34, 0.493 -0.3
AKR/J m 0.378 0.052   4 0.026 0.137 0.304, 0.418 -0.91
B6129SF1/J f 0.515 0.12   4 0.0599 0.233 0.336, 0.585 1.21
B6129SF1/J m 0.57 0.133   4 0.0667 0.234 0.395, 0.703 2.3
B6D2F1/J f 0.46 0.0489   4 0.0245 0.106 0.419, 0.525 0.34
B6D2F1/J m 0.445 0.0842   4 0.0421 0.189 0.32, 0.502 0.21
BALB/cByJ f 0.428 0.0772   4 0.0386 0.18 0.367, 0.533 -0.16
BALB/cByJ m 0.444 0.144   4 0.0721 0.325 0.295, 0.58 0.19
BTBR T+ Itpr3tf/J f 0.354 0.0472   5 0.0211 0.133 0.278, 0.393 -1.32
BTBR T+ Itpr3tf/J m 0.379 0.0615   3 0.0355 0.162 0.311, 0.431 -0.9
C57BL/10J f 0.429 0.0553   4 0.0276 0.129 0.356, 0.489 -0.14
C57BL/10J m 0.422 0.0699   4 0.035 0.166 0.328, 0.497 -0.18
C57BL/6J f 0.558 0.0613   4 0.0307 0.11 0.498, 0.63 1.88
C57BL/6J m 0.515 0.0338   4 0.0169 0.0656 0.471, 0.545 1.38
CAST/EiJ f 0.36 0.0354   4 0.0177 0.0983 0.312, 0.397 -1.23
CAST/EiJ m 0.36 0.0635   4 0.0317 0.176 0.301, 0.449 -1.21
DBA/2J f 0.392 0.0782   4 0.0391 0.199 0.278, 0.453 -0.72
DBA/2J m 0.399 0.0885   4 0.0442 0.222 0.308, 0.48 -0.56
NOD/ShiLtJ f 0.416 0.0413   4 0.0206 0.0992 0.392, 0.478 -0.35
NOD/ShiLtJ m 0.43 0.0482   4 0.0241 0.112 0.397, 0.5 -0.04
SM/J f 0.407 0.101   4 0.0506 0.248 0.306, 0.546 -0.49
SM/J m 0.444 0.0461   4 0.023 0.104 0.404, 0.508 0.19


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ f 0.5195 0.0379 0.5951 0.4439
129S1/SvImJ m 0.4037 0.0379 0.4794 0.3281
AKR/J f 0.419 0.0379 0.4946 0.3434
AKR/J m 0.378 0.0379 0.4536 0.3024
B6129SF1/J f 0.5152 0.0379 0.5909 0.4396
B6129SF1/J m 0.57 0.0379 0.6456 0.4944
B6D2F1/J f 0.4603 0.0379 0.5359 0.3846
B6D2F1/J m 0.4453 0.0379 0.5209 0.3696
BALB/cByJ f 0.428 0.0379 0.5036 0.3524
BALB/cByJ m 0.4438 0.0379 0.5194 0.3681
BTBR T+ Itpr3tf/J f 0.354 0.0339 0.4216 0.2864
BTBR T+ Itpr3tf/J m 0.3787 0.0438 0.466 0.2913
C57BL/10J f 0.4288 0.0379 0.5044 0.3531
C57BL/10J m 0.422 0.0379 0.4976 0.3464
C57BL/6J f 0.5585 0.0379 0.6341 0.4829
C57BL/6J m 0.5152 0.0379 0.5909 0.4396
CAST/EiJ f 0.3598 0.0379 0.4354 0.2841
CAST/EiJ m 0.3605 0.0379 0.4361 0.2849
DBA/2J f 0.392 0.0379 0.4676 0.3164
DBA/2J m 0.3992 0.0379 0.4749 0.3236
NOD/ShiLtJ f 0.4163 0.0379 0.4919 0.3406
NOD/ShiLtJ m 0.4305 0.0379 0.5061 0.3549
SM/J f 0.4073 0.0379 0.4829 0.3316
SM/J m 0.4438 0.0379 0.5194 0.3681


  LEAST SQUARES MEANS (MODEL-ADJUSTED), SEXES COMBINED
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ both 0.4616 0.0268 0.5151 0.4082
AKR/J both 0.3985 0.0268 0.452 0.345
B6129SF1/J both 0.5426 0.0268 0.5961 0.4892
B6D2F1/J both 0.4528 0.0268 0.5062 0.3993
BALB/cByJ both 0.4359 0.0268 0.4893 0.3824
BTBR T+ Itpr3tf/J both 0.3663 0.0277 0.4216 0.3111
C57BL/10J both 0.4254 0.0268 0.4788 0.3719
C57BL/6J both 0.5369 0.0268 0.5903 0.4834
CAST/EiJ both 0.3601 0.0268 0.4136 0.3067
DBA/2J both 0.3956 0.0268 0.4491 0.3422
NOD/ShiLtJ both 0.4234 0.0268 0.4768 0.3699
SM/J both 0.4255 0.0268 0.479 0.372




  GWAS USING LINEAR MIXED MODELS