Project measure / variable:   Jax5   wean_total


  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Jax5 - total number of pups weaned per dam



  MEASURE SUMMARY
Measure Summary Female
Number of strains tested35 strains
Mean of the strain means20.0   n
Median of the strain means20.0   n
SD of the strain means± 6.16
Coefficient of variation (CV)0.308
Min–max range of strain means7.68   –   35.0   n
Mean sample size per strain46.9   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
strain 34 59684.2267 1755.4184 30.804 < 0.0001
Residuals 1583 90210.0372 56.9868


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129P3/J f 12.8 7.7   49 1.1 0.6 -1.17
129S1/SvImJ f 22.0 8.4   47 1.23 0.382 4.0, 48.0 0.32
129X1/SvJ f 20.6 9.17   48 1.32 0.446 0.09
A/J f 20.3 8.35   51 1.17 0.412 2.0, 36.0 0.04
AKR/J f 18.2 6.55   49 0.936 0.361 6.0, 30.0 -0.3
B6.129P2-Apoetm1Unc/J f 17.1 4.6   50 0.65 0.269 7.0, 30.0 -0.48
B6(Cg)-Tyrc-2J/J f 20.3 7.15   18 1.69 0.353 3.0, 30.0 0.04
BALB/cByJ f 17.1 7.81   43 1.19 0.457 3.0, 35.0 -0.48
BALB/cJ f 21.6 7.02   50 0.992 0.325 5.0, 35.0 0.25
C3HeB/FeJ f 34.0 10.5   34 1.8 0.308 3.0, 50.0 2.27
C3H/HeJ f 17.2 6.32   50 0.894 0.367 3.0, 31.0 -0.46
C3H/HeOuJ f 20.0 8.19   50 1.16 0.41 -0.01
C57BL/10J f 17.8 7.12   50 1.01 0.4 5.0, 38.0 -0.36
C57BL/6J f 28.3 7.14   51 1.0 0.253 13.0, 47.0 1.34
C57BLKS/J f 12.6 7.12   45 1.06 0.567 -1.21
C57L/J f 14.7 8.47   42 1.31 0.576 -0.87
CAST/EiJ f 13.5 5.93   49 0.848 0.441 -1.06
CBA/CaJ f 22.5 6.52   49 0.931 0.289 5.0, 39.0 0.4
CBA/J f 21.7 5.55   49 0.793 0.256 9.0, 35.0 0.27
DBA/1J f 20.0 4.87   50 0.688 0.243 12.0, 32.0 -0.01
DBA/1LacJ f 22.7 5.74   49 0.82 0.253 10.0, 38.0 0.43
DBA/2J f 24.8 6.3   49 0.9 0.254 10.0, 42.0 0.77
FVB/NJ f 35.0 8.88   50 1.26 0.254 15.0, 54.0 2.43
KK/HlJ f 14.9 7.85   25 1.57 0.526 2.0, 35.0 -0.83
LP/J f 12.3 6.19   50 0.875 0.502 -1.26
MRL/MpJ f 18.0 6.46   50 0.914 0.358 -0.33
NOD.CB17-Prkdcscid/J f 23.7 8.42   50 1.19 0.355 6.0, 42.0 0.59
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ f 23.9 9.09   22 1.94 0.38 7.0, 43.0 0.63
NOD/ShiLtJ f 27.0 8.73   50 1.23 0.324 10.0, 53.0 1.13
NZB/BlNJ f 7.68 4.85   50 0.686 0.632 -2.01
NZW/LacJ f 15.5 5.58   50 0.789 0.359 4.0, 29.0 -0.74
PL/J f 19.0 10.6   49 1.51 0.557 -0.17
SJL/J f 31.3 10.3   50 1.46 0.33 11.0, 52.0 1.83
SM/J f 11.4 7.01   50 0.991 0.616 -1.4
SWR/J f 21.8 10.0   50 1.42 0.462 2.0, 41.0 0.29


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129P3/J f 12.8367 1.0784 14.952 10.7214
129S1/SvImJ f 21.9787 1.1011 24.1385 19.8189
129X1/SvJ f 20.5833 1.0896 22.7205 18.4461
A/J f 20.2745 1.0571 22.3479 18.2011
AKR/J f 18.1633 1.0784 20.2786 16.048
B6.129P2-Apoetm1Unc/J f 17.06 1.0676 19.154 14.966
B6(Cg)-Tyrc-2J/J f 20.2778 1.7793 23.7678 16.7877
BALB/cByJ f 17.093 1.1512 19.3511 14.835
BALB/cJ f 21.62 1.0676 23.714 19.526
C3HeB/FeJ f 34.0294 1.2946 36.5688 31.49
C3H/HeJ f 17.22 1.0676 19.314 15.126
C3H/HeOuJ f 20.0 1.0676 22.094 17.906
C57BL/10J f 17.8 1.0676 19.894 15.706
C57BL/6J f 28.2549 1.0571 30.3283 26.1815
C57BLKS/J f 12.5556 1.1253 14.7629 10.3483
C57L/J f 14.7143 1.1648 16.9991 12.4295
CAST/EiJ f 13.4694 1.0784 15.5847 11.3541
CBA/CaJ f 22.5102 1.0784 24.6255 20.3949
CBA/J f 21.6939 1.0784 23.8092 19.5786
DBA/1J f 20.04 1.0676 22.134 17.946
DBA/1LacJ f 22.6939 1.0784 24.8092 20.5786
DBA/2J f 24.8163 1.0784 26.9316 22.701
FVB/NJ f 35.0 1.0676 37.094 32.906
KK/HlJ f 14.92 1.5098 17.8814 11.9586
LP/J f 12.32 1.0676 14.414 10.226
MRL/MpJ f 18.04 1.0676 20.134 15.946
NOD.CB17-Prkdcscid/J f 23.7 1.0676 25.794 21.606
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ f 23.9091 1.6094 27.066 20.7522
NOD/ShiLtJ f 26.96 1.0676 29.054 24.866
NZB/BlNJ f 7.68 1.0676 9.774 5.586
NZW/LacJ f 15.52 1.0676 17.614 13.426
PL/J f 18.9592 1.0784 21.0745 16.8439
SJL/J f 31.3 1.0676 33.394 29.206
SM/J f 11.38 1.0676 13.474 9.286
SWR/J f 21.76 1.0676 23.854 19.666




  GWAS USING LINEAR MIXED MODELS