Phenotype measure:   Gershenfeld1   OFTrearing_Rx


  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Gershenfeld1 - vertical movements, rearing, 15 min test imipramine 30mg/kg



  MEASURE SUMMARY
Measure Summary Male
Number of strains tested12 strains
Mean of the strain means100   n
Median of the strain means105   n
SD of the strain means± 70.3
Coefficient of variation (CV)0.702
Min–max range of strain means4.20   –   230   n
Mean sample size per strain5.0   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
strain 11 274638.1283 24967.1026 19.9778 < 0.0001
Residuals 49 61237.3143 1249.7411


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129S6/SvEvTac m 4.2 5.5   5 2.46 1.31 -1.36
A/J m 24.2 17.8   5 7.96 0.736 7.0, 51.0 -1.08
AKR/J m 75.6 19.4   5 8.69 0.257 55.0, 98.0 -0.35
BALB/cJ m 57.2 42.8   5 19.2 0.749 1.0, 99.0 -0.61
C3H/HeJ m 118.0 39.6   5 17.7 0.335 65.0, 168.0 0.25
C57BL/6J m 124.0 33.6   5 15.0 0.271 83.0, 173.0 0.34
Crl:NMRI(Han) m 201.0 15.9   4 7.93 0.0789 188.0, 223.0 1.44
DBA/2J m 92.6 28.6   5 12.8 0.308 70.0, 140.0 -0.11
FVB/NJ m 230.0 29.2   5 13.0 0.127 186.0, 252.0 1.85
LP/J m 15.6 23.4   7 8.85 1.5 -1.2
SENCARA/PtJ m 123.0 62.8   5 28.1 0.51 40.0, 189.0 0.33
SWR/J m 136.0 58.6   5 26.2 0.432 88.0, 234.0 0.51


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129S6/SvEvTac m 4.2 15.8098 35.9709 0.0
A/J m 24.2 15.8098 55.9709 0.0
AKR/J m 75.6 15.8098 107.3709 43.8291
BALB/cJ m 57.2 15.8098 88.9709 25.4291
C3H/HeJ m 118.0 15.8098 149.7709 86.2291
C57BL/6J m 124.0 15.8098 155.7709 92.2291
Crl:NMRI(Han) m 201.0 17.6758 236.5209 165.4791
DBA/2J m 92.6 15.8098 124.3709 60.8291
FVB/NJ m 230.0 15.8098 261.7709 198.2291
LP/J m 15.5714 13.3617 42.4227 0.0
SENCARA/PtJ m 123.0 15.8098 154.7709 91.2291
SWR/J m 135.8 15.8098 167.5709 104.0291




  GWAS USING LINEAR MIXED MODELS