Project measure / variable:   Loos1   preference_4

ID, description, units MPD:50701   preference_4   cognitive response: entries through preferred vs. non-preferred entrances into shelter    habituation (4)  
Data set, strains Loos1   inbred   8 strains     sex: m     age: 8-19wks
Procedure home cage monitoring
Ontology mappings

  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Loos1 - cognitive response: entries through preferred vs. non-preferred entrances into shelter habituation (4)



  MEASURE SUMMARY
Measure Summary Male
Number of strains tested8 strains
Mean of the strain means0.378   None
Median of the strain means0.363   None
SD of the strain means± 0.127
Coefficient of variation (CV)0.335
Min–max range of strain means0.225   –   0.583   None
Mean sample size per strain36.0   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
strain 7 4.5738 0.6534 8.9088 < 0.0001
Residuals 280 20.5361 0.0733


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129S1/SvImJ m 0.583 0.352   42 0.0543 0.604 -0.172, 1.0 1.61
A/J m 0.346 0.344   28 0.065 0.994 -0.288, 1.0 -0.26
BALB/cJ m 0.38 0.289   25 0.0579 0.76 -0.161, 1.0 0.01
C3H/HeJ m 0.428 0.323   19 0.0742 0.756 -0.171, 0.929 0.39
C57BL/6J m 0.26 0.209   86 0.0225 0.802 -0.103, 0.74 -0.93
DBA/2J m 0.522 0.273   35 0.0462 0.523 0.0118, 0.982 1.13
FVB/NJ m 0.225 0.182   26 0.0357 0.808 -0.00855, 0.642 -1.21
NOD/ShiLtJ m 0.283 0.224   27 0.0431 0.792 -0.0145, 0.887 -0.75


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ m 0.5827 0.0418 0.6649 0.5004
A/J m 0.346 0.0512 0.4467 0.2452
BALB/cJ m 0.3804 0.0542 0.487 0.2738
C3H/HeJ m 0.4279 0.0621 0.5502 0.3056
C57BL/6J m 0.2601 0.0292 0.3176 0.2026
DBA/2J m 0.5217 0.0458 0.6118 0.4316
FVB/NJ m 0.2253 0.0531 0.3299 0.1208
NOD/ShiLtJ m 0.2829 0.0521 0.3855 0.1803




  GWAS USING LINEAR MIXED MODELS