Project measure / variable:   Harrill1   pct_spleen_ctrl


  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Harrill1 - spleen weight as percentage of body weight control



  MEASURE SUMMARY
Measure Summary Female
Number of strains tested34 strains
Mean of the strain means0.332   %
Median of the strain means0.321   %
SD of the strain means± 0.104
Coefficient of variation (CV)0.312
Min–max range of strain means0.133   –   0.492   %
Mean sample size per strain4.0   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
strain 33 1.4261 0.0432 13.4171 < 0.0001
Residuals 102 0.3285 0.0032


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129S1/SvImJ f 0.198 0.0512   4 0.0256 0.259 0.15, 0.27 -1.29
A/J f 0.233 0.0443   4 0.0221 0.19 0.19, 0.28 -0.96
AKR/J f 0.323 0.0793   4 0.0397 0.246 0.27, 0.44 -0.09
BALB/cJ f 0.373 0.033   4 0.0165 0.0887 0.33, 0.41 0.39
BTBR T+ Itpr3tf/J f 0.242 0.0427   4 0.0214 0.176 0.19, 0.29 -0.87
BUB/BnJ f 0.492 0.0512   4 0.0256 0.104 0.44, 0.56 1.54
C3H/HeJ f 0.435 0.0412   4 0.0206 0.0948 0.39, 0.47 0.99
C57BL/6J f 0.305 0.037   4 0.0185 0.121 0.27, 0.35 -0.26
C57BLKS/J f 0.445 0.0191   4 0.00957 0.043 0.43, 0.47 1.09
C57BR/cdJ f 0.357 0.0881   4 0.044 0.246 0.24, 0.43 0.24
C58/J f 0.46 0.0424   4 0.0212 0.0922 0.42, 0.51 1.23
CBA/J f 0.31 0.056   4 0.028 0.181 0.26, 0.38 -0.21
CE/J f 0.217 0.033   4 0.0165 0.152 0.18, 0.26 -1.11
DBA/2J f 0.465 0.0465   4 0.0233 0.1 0.4, 0.51 1.28
FVB/NJ f 0.41 0.0183   4 0.00913 0.0445 0.39, 0.43 0.75
I/LnJ f 0.39 0.051   4 0.0255 0.131 0.32, 0.44 0.56
KK/HlJ f 0.305 0.0443   4 0.0222 0.145 0.26, 0.36 -0.26
LG/J f 0.422 0.1   4 0.0501 0.237 0.3, 0.54 0.86
LP/J f 0.158 0.0275   4 0.0138 0.175 0.13, 0.19 -1.68
MA/MyJ f 0.163 0.0222   4 0.0111 0.136 0.14, 0.19 -1.63
MRL/MpJ f 0.325 0.0839   4 0.0419 0.258 0.27, 0.45 -0.07
NOD/ShiLtJ f 0.368 0.0377   4 0.0189 0.103 0.32, 0.41 0.34
NON/ShiLtJ f 0.312 0.0499   4 0.025 0.16 0.24, 0.35 -0.2
NOR/LtJ f 0.3 0.0535   4 0.0268 0.178 0.23, 0.36 -0.31
NZW/LacJ f 0.318 0.0419   4 0.021 0.132 0.26, 0.36 -0.14
P/J f 0.307 0.0457   4 0.0229 0.149 0.26, 0.37 -0.24
PL/J f 0.195 0.0332   4 0.0166 0.17 0.17, 0.24 -1.32
PWK/PhJ f 0.29 0.0432   4 0.0216 0.149 0.23, 0.33 -0.41
RIIIS/J f 0.237 0.0512   4 0.0256 0.216 0.19, 0.31 -0.92
SEA/GnJ f 0.492 0.0591   4 0.0295 0.12 0.43, 0.57 1.54
SJL/J f 0.475 0.0975   4 0.0487 0.205 0.36, 0.57 1.37
SM/J f 0.358 0.0287   4 0.0144 0.0803 0.32, 0.38 0.25
SWR/J f 0.485 0.126   4 0.0628 0.259 0.36, 0.64 1.47
WSB/EiJ f 0.133 0.0685   4 0.0342 0.517 0.07, 0.23 -1.92


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ f 0.1975 0.0284 0.2538 0.1412
A/J f 0.2325 0.0284 0.2888 0.1762
AKR/J f 0.3225 0.0284 0.3788 0.2662
BALB/cJ f 0.3725 0.0284 0.4288 0.3162
BTBR T+ Itpr3tf/J f 0.2425 0.0284 0.2988 0.1862
BUB/BnJ f 0.4925 0.0284 0.5488 0.4362
C3H/HeJ f 0.435 0.0284 0.4913 0.3787
C57BL/6J f 0.305 0.0284 0.3613 0.2487
C57BLKS/J f 0.445 0.0284 0.5013 0.3887
C57BR/cdJ f 0.3575 0.0284 0.4138 0.3012
C58/J f 0.46 0.0284 0.5163 0.4037
CBA/J f 0.31 0.0284 0.3663 0.2537
CE/J f 0.2175 0.0284 0.2738 0.1612
DBA/2J f 0.465 0.0284 0.5213 0.4087
FVB/NJ f 0.41 0.0284 0.4663 0.3537
I/LnJ f 0.39 0.0284 0.4463 0.3337
KK/HlJ f 0.305 0.0284 0.3613 0.2487
LG/J f 0.4225 0.0284 0.4788 0.3662
LP/J f 0.1575 0.0284 0.2138 0.1012
MA/MyJ f 0.1625 0.0284 0.2188 0.1062
MRL/MpJ f 0.325 0.0284 0.3813 0.2687
NOD/ShiLtJ f 0.3675 0.0284 0.4238 0.3112
NON/ShiLtJ f 0.3125 0.0284 0.3688 0.2562
NOR/LtJ f 0.3 0.0284 0.3563 0.2437
NZW/LacJ f 0.3175 0.0284 0.3738 0.2612
P/J f 0.3075 0.0284 0.3638 0.2512
PL/J f 0.195 0.0284 0.2513 0.1387
PWK/PhJ f 0.29 0.0284 0.3463 0.2337
RIIIS/J f 0.2375 0.0284 0.2938 0.1812
SEA/GnJ f 0.4925 0.0284 0.5488 0.4362
SJL/J f 0.475 0.0284 0.5313 0.4187
SM/J f 0.3575 0.0284 0.4138 0.3012
SWR/J f 0.485 0.0284 0.5413 0.4287
WSB/EiJ f 0.1325 0.0284 0.1888 0.0762




  GWAS USING LINEAR MIXED MODELS