Phenotype measure:   Crowley1   stereotypy_d60

ID, description, units MPD:39423   stereotypy_d60   repetitive behavior, breaking of same beam, 60 min test   [n]  on day 60
haloperidol study
Data set, strains Crowley1   inbred w/CC8   27 strains     sex: m     age: 9-28wks
Procedure open field test
Ontology mappings

  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Crowley1 - repetitive behavior, breaking of same beam, 60 min test on day 60



  MEASURE SUMMARY
Measure Summary Male
Number of strains tested27 strains
Mean of the strain means3129   n
Median of the strain means2624   n
SD of the strain means± 1724
Coefficient of variation (CV)0.551
Min–max range of strain means546   –   6749   n
Mean sample size per strain5.8   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
strain 26 449807995.2695 17300307.5104 13.0963 < 0.0001
Residuals 131 173052050.1988 1321008.0168


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129S1/SvImJ m 631.0 257.0   8 90.9 0.407 131.0, 949.0 -1.45
A/J m 1268.0 216.0   5 96.5 0.17 977.0, 1566.0 -1.08
AKR/J m 2624.0 379.0   5 170.0 0.144 2304.0, 3269.0 -0.29
BALB/cByJ m 2576.0 922.0   4 461.0 0.358 1368.0, 3587.0 -0.32
BTBR T+ Itpr3tf/J m 2036.0 1226.0   8 433.0 0.602 735.0, 3842.0 -0.63
C3H/HeJ m 1474.0 491.0   5 220.0 0.333 992.0, 2095.0 -0.96
C57BL/6J m 3188.0 953.0   5 426.0 0.299 2398.0, 4561.0 0.03
C57BLKS/J m 2581.0 502.0   5 225.0 0.195 2146.0, 3449.0 -0.32
CAST/EiJ m 5941.0 1945.0   5 870.0 0.327 3527.0, 8572.0 1.63
CBA/J m 3700.0 667.0   5 298.0 0.18 3045.0, 4630.0 0.33
DBA/2J m 4687.0 983.0   9 328.0 0.21 3355.0, 5846.0 0.9
DDY/JclSidSeyFrkJ m 2551.0 1270.0   7 480.0 0.498 859.0, 4290.0 -0.34
FVB/NJ m 6749.0 1513.0   5 677.0 0.224 5169.0, 8268.0 2.1
KK/HlJ m 3043.0 813.0   7 307.0 0.267 1971.0, 4461.0 -0.05
MA/MyJ m 4840.0 666.0   6 272.0 0.138 3912.0, 5724.0 0.99
MOLF/EiJ m 1790.0 661.0   5 296.0 0.369 1143.0, 2733.0 -0.78
MRL/MpJ m 3579.0 1079.0   5 483.0 0.302 2540.0, 5391.0 0.26
MSM/MsJ m 1825.0 1451.0   6 593.0 0.795 608.0, 4142.0 -0.76
NOD/ShiLtJ m 5751.0 1333.0   5 596.0 0.232 3789.0, 7418.0 1.52
NON/ShiLtJ m 4705.0 2320.0   8 820.0 0.493 1509.0, 8893.0 0.91
NZL/LtJ m 1782.0 233.0   8 82.2 0.131 1298.0, 2107.0 -0.78
NZO/HlLtJ m 546.0 159.0   4 79.7 0.292 375.0, 726.0 -1.5
NZW/LacJ m 1268.0 306.0   5 137.0 0.241 923.0, 1739.0 -1.08
PWK/PhJ m 1598.0 649.0   5 290.0 0.406 1048.0, 2633.0 -0.89
SJL/J m 4104.0 901.0   5 403.0 0.22 3193.0, 5105.0 0.57
SM/J m 5743.0 2226.0   8 787.0 0.388 3784.0, 10949.0 1.52
WSB/EiJ m 3899.0 575.0   5 257.0 0.148 3279.0, 4695.0 0.45


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ m 630.875 406.357 1434.7461 0.0
A/J m 1268.2 514.0055 2285.0254 251.3746
AKR/J m 2624.4 514.0055 3641.2254 1607.5746
BALB/cByJ m 2575.75 574.6756 3712.5953 1438.9047
BTBR T+ Itpr3tf/J m 2036.125 406.357 2839.9961 1232.2539
C3H/HeJ m 1473.6 514.0055 2490.4254 456.7746
C57BL/6J m 3188.4 514.0055 4205.2254 2171.5746
C57BLKS/J m 2581.0 514.0055 3597.8254 1564.1746
CAST/EiJ m 5940.6 514.0055 6957.4254 4923.7746
CBA/J m 3700.4 514.0055 4717.2254 2683.5746
DBA/2J m 4687.3333 383.117 5445.2302 3929.4364
DDY/JclSidSeyFrkJ m 2550.7143 434.4139 3410.0886 1691.34
FVB/NJ m 6749.0 514.0055 7765.8254 5732.1746
KK/HlJ m 3042.7143 434.4139 3902.0886 2183.34
MA/MyJ m 4840.1667 469.2206 5768.397 3911.9363
MOLF/EiJ m 1789.6 514.0055 2806.4254 772.7746
MRL/MpJ m 3578.6 514.0055 4595.4254 2561.7746
MSM/MsJ m 1825.1667 469.2206 2753.397 896.9363
NOD/ShiLtJ m 5751.0 514.0055 6767.8254 4734.1746
NON/ShiLtJ m 4705.25 406.357 5509.1211 3901.3789
NZL/LtJ m 1781.5 406.357 2585.3711 977.6289
NZO/HlLtJ m 546.5 574.6756 1683.3453 0.0
NZW/LacJ m 1268.2 514.0055 2285.0254 251.3746
PWK/PhJ m 1597.8 514.0055 2614.6254 580.9746
SJL/J m 4104.2 514.0055 5121.0254 3087.3746
SM/J m 5742.625 406.357 6546.4961 4938.7539
WSB/EiJ m 3899.4 514.0055 4916.2254 2882.5746




  GWAS USING LINEAR MIXED MODELS