Phenotype measure:   Wahlsten1   ac_index

ID, description, units MPD:10814   ac_index   anterior commissure index (0=absent, 1=normal, <.60 is abnormal)   [score]
Data set, strains Wahlsten1   inbred   21 strains     sex: both     age: 12wks
Procedure histopathology
Ontology mappings

  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Wahlsten1 - anterior commissure index (0=absent, 1=normal, <.60 is abnormal)



  MEASURE SUMMARY
Measure Summary FemaleMale
Number of strains tested21 strains20 strains
Mean of the strain means1.01   score 1.00   score
Median of the strain means0.974   score 0.988   score
SD of the strain means± 0.138 ± 0.146
Coefficient of variation (CV)0.137 0.146
Min–max range of strain means0.773   –   1.37   score 0.772   –   1.30   score
Mean sample size per strain9.5   mice 9.6   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
sex 1 0.0467 0.0467 4.0685 0.0445
strain 19 7.8794 0.4147 36.0988 < 0.0001
sex:strain 19 0.2056 0.0108 0.9421 0.5307
Residuals 345 3.9634 0.0115


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129S1/SvImJ f 0.888 0.0905   10 0.0286 0.102 0.714, 1.05 -0.86
129S1/SvImJ m 0.807 0.26   10 0.0824 0.323 0.0753, 0.983 -1.34
A/J f 1.12 0.0745   8 0.0264 0.0666 1.01, 1.22 0.83
A/J m 1.14 0.0964   10 0.0305 0.0848 0.962, 1.32 0.94
AKR/J f 0.905 0.0851   9 0.0284 0.094 0.812, 1.11 -0.73
AKR/J m 0.923 0.0622   8 0.022 0.0674 0.855, 1.03 -0.54
BALB/cByJ f 1.1 0.125   10 0.0397 0.114 0.922, 1.29 0.69
BALB/cByJ m 1.05 0.195   10 0.0617 0.186 0.885, 1.5 0.33
BTBR T+ Itpr3tf/J f 1.15 0.134   12 0.0388 0.117 0.981, 1.51 1.05
BTBR T+ Itpr3tf/J m 1.14 0.115   6 0.047 0.101 1.02, 1.28 0.94
C3H/HeJ f 0.994 0.0995   10 0.0315 0.1 0.87, 1.23 -0.08
C3H/HeJ m 0.921 0.0892   8 0.0315 0.0968 0.811, 1.04 -0.56
C57BL/6J f 1.09 0.0909   8 0.0322 0.0836 0.919, 1.21 0.61
C57BL/6J m 1.11 0.0931   10 0.0294 0.0836 1.02, 1.27 0.74
C57L/J f 1.1 0.0793   10 0.0251 0.0719 0.999, 1.26 0.69
C57L/J m 1.13 0.0917   8 0.0324 0.0811 1.01, 1.25 0.87
C58/J f 1.16 0.038   9 0.0127 0.0327 1.09, 1.21 1.12
C58/J m 1.21 0.115   10 0.0363 0.0946 0.996, 1.36 1.42
CAST/EiJ f 0.83 0.205   9 0.0685 0.248 0.634, 1.35 -1.28
CAST/EiJ m 0.772 0.0732   9 0.0244 0.0948 0.668, 0.875 -1.57
DBA/2J f 0.907 0.0794   10 0.0251 0.0876 0.729, 1.03 -0.72
DBA/2J m 0.92 0.0901   8 0.0319 0.098 0.78, 1.0 -0.56
FVB/NJ f 0.926 0.0945   10 0.0299 0.102 0.806, 1.13 -0.58
FVB/NJ m 0.989 0.0697   11 0.021 0.0705 0.876, 1.09 -0.09
MOLF/EiJ f 1.06 0.148   8 0.0523 0.139 0.903, 1.31 0.39
MOLF/EiJ m 1.12 0.0649   6 0.0265 0.0579 1.02, 1.21 0.81
NOD/ShiLtJ f 0.941 0.0747   12 0.0216 0.0793 0.807, 1.05 -0.47
NOD/ShiLtJ m 0.988 0.0987   12 0.0285 0.0999 0.877, 1.25 -0.1
NZB/BlNJ f 0.858 0.0431   6 0.0176 0.0503 0.81, 0.916 -1.07
NZB/BlNJ m 0.828 0.117   12 0.0337 0.141 0.577, 0.967 -1.19
PERA/EiJ f 0.773 0.061   10 0.0193 0.079 0.696, 0.882 -1.69
PERA/EiJ m 0.787 0.077   12 0.0222 0.0978 0.708, 0.964 -1.47
PL/J f 0.969 0.0794   12 0.0229 0.0819 0.866, 1.11 -0.27
PL/J m 0.957 0.0365   8 0.0129 0.0381 0.899, 0.996 -0.31
SJL/J f 0.944 0.0851   8 0.0301 0.0902 0.842, 1.06 -0.45
SJL/J m 0.958 0.101   12 0.0293 0.106 0.739, 1.1 -0.3
SM/J f 1.37 0.105   14 0.0282 0.0771 1.12, 1.5 2.65
SM/J m 1.3 0.113   10 0.0356 0.0865 1.13, 1.5 2.04
SPRET/EiJ f 0.974 0.105   5 0.0468 0.108 0.851, 1.13 -0.23
SWR/J f 1.06 0.072   10 0.0228 0.0678 0.921, 1.13 0.39
SWR/J m 0.993 0.0528   10 0.0167 0.0532 0.924, 1.1 -0.06


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ f 0.8878 0.0339 0.9545 0.8211
129S1/SvImJ m 0.8073 0.0339 0.874 0.7407
A/J f 1.1188 0.0379 1.1933 1.0442
A/J m 1.1372 0.0339 1.2039 1.0705
AKR/J f 0.9047 0.0357 0.9749 0.8344
AKR/J m 0.9229 0.0379 0.9974 0.8483
BALB/cByJ f 1.1027 0.0339 1.1694 1.036
BALB/cByJ m 1.0467 0.0339 1.1134 0.98
BTBR T+ Itpr3tf/J f 1.1493 0.0309 1.2101 1.0884
BTBR T+ Itpr3tf/J m 1.1367 0.0438 1.2227 1.0506
C3H/HeJ f 0.9941 0.0339 1.0608 0.9274
C3H/HeJ m 0.9211 0.0379 0.9957 0.8466
C57BL/6J f 1.0874 0.0379 1.1619 1.0128
C57BL/6J m 1.113 0.0339 1.1797 1.0463
C57L/J f 1.1019 0.0339 1.1686 1.0352
C57L/J m 1.1313 0.0379 1.2058 1.0567
C58/J f 1.1622 0.0357 1.2325 1.092
C58/J m 1.2126 0.0339 1.2793 1.1459
CAST/EiJ f 0.8302 0.0357 0.9005 0.76
CAST/EiJ m 0.7722 0.0357 0.8425 0.702
DBA/2J f 0.9073 0.0339 0.974 0.8406
DBA/2J m 0.9198 0.0379 0.9943 0.8452
FVB/NJ f 0.9263 0.0339 0.993 0.8596
FVB/NJ m 0.9886 0.0323 1.0522 0.9251
MOLF/EiJ f 1.064 0.0379 1.1385 0.9895
MOLF/EiJ m 1.1217 0.0438 1.2077 1.0356
NOD/ShiLtJ f 0.9412 0.0309 1.0021 0.8804
NOD/ShiLtJ m 0.9882 0.0309 1.049 0.9273
NZB/BlNJ f 0.8577 0.0438 0.9437 0.7716
NZB/BlNJ m 0.8283 0.0309 0.8892 0.7675
PERA/EiJ f 0.7727 0.0339 0.8394 0.706
PERA/EiJ m 0.7872 0.0309 0.848 0.7263
PL/J f 0.9688 0.0309 1.0297 0.908
PL/J m 0.9574 0.0379 1.0319 0.8828
SJL/J f 0.9436 0.0379 1.0182 0.8691
SJL/J m 0.9579 0.0309 1.0188 0.8971
SM/J f 1.3679 0.0286 1.4242 1.3115
SM/J m 1.303 0.0339 1.3697 1.2363
SWR/J f 1.0612 0.0339 1.1279 0.9945
SWR/J m 0.9928 0.0339 1.0595 0.9261


  LEAST SQUARES MEANS (MODEL-ADJUSTED), SEXES COMBINED
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ both 0.8476 0.024 0.8947 0.8004
A/J both 1.128 0.0254 1.178 1.078
AKR/J both 0.9138 0.026 0.965 0.8626
BALB/cByJ both 1.0747 0.024 1.1218 1.0276
BTBR T+ Itpr3tf/J both 1.143 0.0268 1.1957 1.0903
C3H/HeJ both 0.9576 0.0254 1.0076 0.9076
C57BL/6J both 1.1002 0.0254 1.1502 1.0502
C57L/J both 1.1166 0.0254 1.1666 1.0666
C58/J both 1.1874 0.0246 1.2358 1.139
CAST/EiJ both 0.8012 0.0253 0.8509 0.7515
DBA/2J both 0.9135 0.0254 0.9635 0.8635
FVB/NJ both 0.9575 0.0234 1.0035 0.9114
MOLF/EiJ both 1.0928 0.0289 1.1498 1.0359
NOD/ShiLtJ both 0.9647 0.0219 1.0077 0.9217
NZB/BlNJ both 0.843 0.0268 0.8957 0.7903
PERA/EiJ both 0.7799 0.0229 0.8251 0.7348
PL/J both 0.9631 0.0245 1.0112 0.915
SJL/J both 0.9508 0.0245 0.9989 0.9027
SM/J both 1.3354 0.0222 1.3791 1.2918
SWR/J both 1.027 0.024 1.0741 0.9799




  GWAS USING LINEAR MIXED MODELS